Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Immunol ; 14: 1167639, 2023.
Article in English | MEDLINE | ID: covidwho-20245313

ABSTRACT

Background: Corona Virus Disease 2019 (COVID-19) and Osteoarthritis (OA) are diseases that seriously affect the physical and mental health and life quality of patients, particularly elderly patients. However, the association between COVID-19 and osteoarthritis at the genetic level has not been investigated. This study is intended to analyze the pathogenesis shared by OA and COVID-19 and to identify drugs that could be used to treat SARS-CoV-2-infected OA patients. Methods: The four datasets of OA and COVID-19 (GSE114007, GSE55235, GSE147507, and GSE17111) used for the analysis in this paper were obtained from the GEO database. Common genes of OA and COVID-19 were identified through Weighted Gene Co-Expression Network Analysis (WGCNA) and differential gene expression analysis. The least absolute shrinkage and selection operator (LASSO) algorithm was used to screen key genes, which were analyzed for expression patterns by single-cell analysis. Finally, drug prediction and molecular docking were carried out using the Drug Signatures Database (DSigDB) and AutoDockTools. Results: Firstly, WGCNA identified a total of 26 genes common between OA and COVID-19, and functional analysis of the common genes revealed the common pathological processes and molecular changes between OA and COVID-19 are mainly related to immune dysfunction. In addition, we screened 3 key genes, DDIT3, MAFF, and PNRC1, and uncovered that key genes are possibly involved in the pathogenesis of OA and COVID-19 through high expression in neutrophils. Finally, we established a regulatory network of common genes between OA and COVID-19, and the free energy of binding estimation was used to identify suitable medicines for the treatment of OA patients infected with SARS-CoV-2. Conclusion: In the present study, we succeeded in identifying 3 key genes, DDIT3, MAFF, and PNRC1, which are possibly involved in the development of both OA and COVID-19 and have high diagnostic value for OA and COVID-19. In addition, niclosamide, ciclopirox, and ticlopidine were found to be potentially useful for the treatment of OA patients infected with SARS-CoV-2.


Subject(s)
COVID-19 , Osteoarthritis , Aged , Humans , COVID-19/diagnosis , COVID-19/genetics , SARS-CoV-2/genetics , Molecular Docking Simulation , Algorithms , Osteoarthritis/diagnosis , Osteoarthritis/drug therapy , Osteoarthritis/genetics , COVID-19 Testing
2.
Sens Actuators B Chem ; 377: 133006, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2232430

ABSTRACT

Common reference methods for COVID-19 variant diagnosis include viral sequencing and PCR-based methods. However, sequencing is tedious, expensive, and time-consuming, while PCR-based methods have high risk of insensitive detection in variant-prone regions and are susceptible to potential background signal interference in biological samples. Here, we report a loop-mediated interference reduction isothermal nucleic acid amplification (LM-IR-INA) strategy for highly sensitive single-base mutation detection in viral variants. This strategy exploits the advantages of nicking endonuclease-mediated isothermal amplification, luminescent iridium(III) probes, and time-resolved emission spectroscopy (TRES). Using the LM-IR-INA strategy, we established a luminescence platform for diagnosing COVID-19 D796Y single-base substitution detection with a detection limit of 2.01 × 105 copies/µL in a linear range of 6.01 × 105 to 3.76 × 108 copies/µL and an excellent specificity with a variant/wild-type ratio of significantly less than 0.0625%. The developed TRES-based method was also successfully applied to detect D796Y single-base substitution sequence in complicated biological samples, including throat and blood, and was a superior to steady-state technique. LM-IR-INA was also demonstrated for detecting the single-base substitution D614G as well as the multiple-base mutation H69/V70del without mutual interference, indicating that this approach has the potential to be used as a universal viral variant detection strategy.

3.
Sensors and actuators B, Chemical ; 377:133006-133006, 2022.
Article in English | EuropePMC | ID: covidwho-2125360

ABSTRACT

Interference reduction isothermal nucleic acid amplification strategy for COVID-19 variant detection.ga1

4.
Energy Build ; 279: 112681, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2120466

ABSTRACT

With the outbreak of infectious diseases such as Corona Virus Disease 2019, medical staff work intensively in isolated plots, medical disposable protective clothing (MDPC) has poor air condition and humidity permeability, which seriously reduces the thermal comfort of medical staff. In this paper, the effect of indoor thermal environment and activity levels on thermal comfort inside MDPC was studied by experiment. Five parts of the body were measured inside MDPC and the appropriate movements were chosen to simulate different levels of labor intensity. Meanwhile, physiological parameters and subjective thermal sensation were statistically analyzed. The results showed the influence range of different indoor temperatures on the temperature and humidity inside MDPC was about 1 °C and 10 %, respectively; it indicated that the environment inside MDPC could be improved by reducing indoor temperature, that is, a cross intelligent adjustment mode was proposed. The effect of labor intensity on the temperature inside MDPC was significantly less than that of humidity. Within 20 min, the humidity changes under moderate and heavy labor intensity were even more than 10 %, and the subjective discomfort threshold of the subjects increased by nearly 50 %. Furthermore, the maximum benefit could be obtained by concentrating cooling on back, forehead, chest and upper arm. Theoretical models of working time, labor intensity, and temperature and humidity inside MDPC under different indoor temperatures and different parts were given. In addition, acceptable regions inside MDPC which were approximately parallelogram in the enthalpy-humidity chart. These conclusions could be a reference for future thermal comfort inside MDPC research.

5.
Biosens Bioelectron ; 198: 113829, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1525700

ABSTRACT

Common reference methods for COVID-19 diagnosis include thermal cycling amplification (e.g. RT-PCR) and isothermal amplification methods (e.g. LAMP and RPA). However, they may not be suitable for direct detection in environmental and biological samples due to background signal interference. Here, we report a rapid and label-free interference reduction nucleic acid amplification strategy (IR-NAAS) that exploits the advantages of luminescent iridium(III) probes, time-resolved emission spectroscopy (TRES) and multi-branch rolling circle amplification (mbRCA). Using IR-NAAS, we established a luminescence approach for diagnosing COVID-19 RNAs sequences RdRp, ORF1ab and N with a linear range of 0.06-6.0 × 105 copies/mL and a detection limit of down to 7.3 × 104 copies/mL. Moreover, the developed method was successfully applied to detect COVID-19 RNA sequences from various environmental and biological samples, such as domestic sewage, and mice urine, blood, feces, lung tissue, throat and nasal secretions. Apart from COVID-19 diagnosis, IR-NAAS was also demonstrated for detecting other RNA viruses, such as H1N1 and CVA10, indicating that this approach has great potential approach for routine preliminary viral detection.


Subject(s)
Biosensing Techniques , COVID-19 , Influenza A Virus, H1N1 Subtype , Animals , COVID-19 Testing , DNA , Humans , Mice , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , SARS-CoV-2
6.
J Orthop Surg Res ; 16(1): 382, 2021 Jun 14.
Article in English | MEDLINE | ID: covidwho-1269883

ABSTRACT

BACKGROUND: This randomized controlled study compared standard supervised physiotherapy (SPT) with a self-developed, home-based, enhanced knee flexion exercise program involving a low stool (KFEH) in patients who underwent total knee arthroplasty (TKA). METHODS: Patients were recruited from July 2014 to December 2015 and randomly assigned to one of two groups: KFEH (n = 60) and SPT (n = 59). Outcomes (joint function) were evaluated according to the Knee Society Score (KSS), visual analog scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, and range of motion (ROM) assessment at selected time points (preoperatively; 1 week; 1, 3, and 6 months; and 1 year after surgery). RESULTS: Pain and functional improvement were observed in both groups. Non-inferiority of KFEH was evident 12 months postoperatively; however, patients in the KFEH group exhibited better ROM at 1 month (P < 0.01). Absolute WOMAC and KSS scores were slightly better in the KFEH group, although the difference was not statistically significant. There was no difference in VAS scores and complication rates between the two groups. Additionally, the home program would save patient time and decrease the economic burden associated with in-hospital SPT. CONCLUSION: Considering rehabilitation and economic efficiency as well as the COVID pandemic, a home-based enhanced knee flexion exercise program for TKA rehabilitation is recommended.


Subject(s)
Arthroplasty, Replacement, Knee , Exercise Therapy/methods , Osteoarthritis, Knee/rehabilitation , Physical Therapy Modalities , Self Care/methods , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Mobility Limitation , Osteoarthritis, Knee/physiopathology , Osteoarthritis, Knee/surgery , Prospective Studies , Quality of Life , Range of Motion, Articular , Safety , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL